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CHANGES IN THE TYPE OF THE SHOCK-WAVE STRUCTURE

IN HIGH-VELOCITY FLOWS

UDC 518.5:533.6G. A. Tarnavsky

Physical aspects of nonuniqueness of shock-wave structures in supersonic and hypersonic flows are
considered. Thermodynamic conditions determining the dual solution domains are analyzed, and the
boundaries of the transition from Mach to regular reflection are examined.
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Evolution of mathematical simulation methods due to high-quality performance of advanced computers made
it possible to study three-dimensional high-velocity gas flows with complicated shock-wave structures. Investigation
of nonuniqueness and hysteresis of numerical solutions obtained and analysis of the degree of their adequacy to
real physical processes become more and more important. Nevertheless, the approach based on postulates of
mechanics, which sometimes involves too many mathematical details, with an analysis of the classical gas-dynamic
Euler equations closed by the equation of state of an ideal gas, still prevails in gas dynamics. The physics of the
process (excitation of vibrational and rotational degrees of freedom of molecules, their dissociation, recombination,
and ionization of atoms), however, is often ignored. This was more or less admissible in studying supersonic flows
because the influence of physical and chemical processes was not very strong, but the effect of these processes on
the gas medium with hypersonic velocities can be fairly noticeable.

The main objective of the present work is the analysis of shock-wave interaction if a dual solution is possible:
both regular and Mach types of interaction of shock waves can exist under identical governing parameters of the
problem. The results and conclusions of [1] are also discussed, which involved a comprehensive (experimental
and numerical) study of the possibility of “artificially” changing the steady pattern of interaction of shock waves
generated by a high-velocity gas flow incident onto a system of two wedges with apex half-angles β1 and β2 (Fig. 1),
with a transition from Mach reflection of shock waves to regular reflection. For this class of problems, there is a
range of parameters [β∗, β∗∗], in which, under the condition

β∗ ≤ β ≤ β∗∗ (1)

the laws of conservation (of mass, momentum, and energy) admit the existence of both Mach and regular reflection
(Neumann paradox). Outside the range determined by Eq. (1), there can exist only regular reflection if

β < β∗, (2)

or only Mach reflection is

β > β∗∗. (3)

Conditions (1)–(3) are written for the symmetric case β1 = β2 = β (see [2] for more details). Intensification
of research associated with the development of hypersonic flying vehicles and elements of its engine stimulated the
practical interest in studying seemingly purely mathematical problems, such as nonuniqueness and bifurcation of
solutions of equations (in our case, gas-dynamic equations).
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Fig. 1. Shock-wave structures generated by shock-wave interaction: (a) regular reflection; (b) Mach reflection.

For high-velocity flying vehicles, injection of the precompressed oxidizer (air) into the duct of a hypersonic
air-breathing engine (scramjet) is completely determined by the flight velocity and the diffuser geometry, which have
to ensure stability and predictability of scramjet operation, in addition to optimization of the flow-rate parameter.
A system of oblique shock waves responsible for the flow structure in the duct is formed at the scramjet-diffuser
entrance. For the scramjet to operate in the design mode, a system for correcting the inflow into the diffuser should
be developed. Most of such systems are mechanical and are based on the possibility of varying the inflow angle.
The idea of the “thermal correction” of the diffuser [3] seems to be promising, which implies energy input into the
incoming flow upstream of the diffuser. Such a correction (as well as the mechanical correction), however, cannot
guarantee complete elimination of off-design regimes, moreover, in maneuvering of the flying vehicle. One off-design
regime involves the incidence of the oblique shock wave inside the diffuser and its reflection, which can cause flow
separation or formation of a circulation flow. This leads to significant nonuniformity of the flow and to high thermal
and force loads. Therefore, it is important to study such regimes at different flight altitudes and velocities and to
predict their consequences.

Yan et al. [1] considered the possibility of changing the shock-wave interaction mode by means of heat
addition to the flow. In our opinion, however, the interpretation in [1] is incorrect: this is not the transition from
Mach to regular reflection but generation of new thermodynamic conditions in the gas flow under which relation (2)
is valid rather than relation (1). Correspondingly, Mach reflection becomes impossible, and only regular reflection
is observed.

The change in interaction modes should be understood as the solution nonuniqueness under the same ther-
modynamic conditions in domain (1), where the existence of both regular and Mach reflection is possible, though
only one of these regimes is naturally realized.

Let us analyze the results of [1] from the viewpoint of postulates developed in [2, 4–6]. A schematic of two
shock-wave configurations formed due to reflection of shock waves in steady flows is shown in Fig. 1. The regular
configuration (Fig. 1a) formed by the incidence of a supersonic flow with a Mach number M0 onto two wedges with
angles β1 and β2 includes two oblique shock waves i1 and i2 formed near the wedge surface and incident inward the
flow region with angles of inclination ϕ1 and ϕ2 (hereinafter, the angles are determined relative to the free-stream
vector) and two reflected shock waves r1 and r2 with angles of inclination ϕ3 and ϕ4 intersecting at the point R.
The cocurrent stream S with an angle of inclination δ is formed as the flow passes through the system of shock
waves with flow-deflection angles θ1, θ2, θ3, and θ4 on the shock waves i1, i2, r1, and r2, respectively. The following
relations are valid for the steady configuration: θ1 = β1, θ2 = β2, and θ1 − θ3 = θ2 − θ4 = δ. For symmetric
reflection (β1 = β2), we have δ = 0. If the Mach configuration arises (Fig. 1b), the central shock wave m is formed
in addition to incident and reflected shock waves; the front of the central shock wave connects two triple points of
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shock-wave intersection (i1, r1,m) and (i2, r2,m), and two cocurrent streams S1 and S2 with angles of inclination δ1

and δ2 are formed. In the steady configuration, we have θ1 = β1, θ2 = β2, θ1 − θ3 = δ1, and θ2 − θ4 = δ2. In
the case of symmetry (β1 = β2), it is obvious that θ1 = θ2 and δ1 = δ2 = 0. The entire flow is divided into a
number of domains with specific characteristics of the flow (which is uniform in an idealized formulation) in each
domain. Domain 0 (free-stream domain) is bounded on the left by an arbitrary boundary placed in the region of
the incoming supersonic flow (e.g., by a straight line connecting the wedge apices) and on the right by the fronts
of the shock waves i1 and i2 (in addition, by the front m for Mach reflection). Domain 1 (region of the flow turned
clockwise on the shock wave i1 along the upper wedge surface) is bounded by the fronts of the shock waves i1 and r1

on the left and on the right, respectively. Similarly, domain 2 (region of the flow turned anticlockwise on the shock
wave i2 along the surface of the lower wedge) is bounded by the fronts of the shock waves i2 and r2 on the left
and on the right, respectively. Domain 3 (region of the flow turned anticlockwise on the shock wave r1) is bounded
by its front and by the slip surface, which is the boundary of the cocurrent stream S (for Mach reflection, S1).
Domain 4 (region of the flow turned clockwise on the shock wave r2) is bounded by its front and by the slip surface,
which is also the boundary of the cocurrent stream S (for Mach reflection, S2). In the case of regular reflection,
domains 3 and 4 have a common boundary (are directly adjoint); in the case of Mach reflection, domains 3 and 4
are separated by domains 5 and 6 (regions of the flow behind the front of the shock wave m).

Transitions between these two types of reflection are determined by the detachment criterion and by the von
Neumann criterion. These two criteria (bifurcation points) separate three domains where only Mach reflection, both
Mach and regular reflection, or only regular reflection can exist. Transitions between these types of reflection with
variation of parameters determining the physics of the problem, e.g., flight velocity and altitude, can be accompanied
by a hysteresis. The wave structures of these types of reflection are normally considered under the assumption of
unchanged physical properties of the gas flow as it passes through the entire system of shock waves, i.e., the model
of an ideal polytropic gas with a constant ratio of specific heats γ in the entire flow domain is used. Such a physical
model, nevertheless, should be extended to analyze real processes.

For this purpose, in the present work, we use the method of an effective ratio of specific heats (see [5–7]),
which allows us to simulate the gas flow with real gas effects by varying the ratio of specific heats

γ = γ(p, T ), (4)

depending on local values of pressure p and temperature T . The data for xenon used as a test gas in the experiment
[1] for determining the value of γ can be taken from some thermodynamic tables.

In the classical gas dynamics, the critical angles β∗ and β∗∗, which are bifurcation points for the solution
[boundaries of nonuniqueness of (1)], depend only on the problem geometry and two dimensionless parameters:
free-stream Mach number M0 and ratio of specific heats γ0 constant in all domains of the flow:

β∗ = β∗(β1, β2,M0, γ0), β∗∗ = β∗∗(β1, β2,M0, γ0). (5)

For hypersonic flows, where the physics of the processes in the gas medium have to be taken into account,
the angles β∗ and β∗∗ depend on the dimensional values of physical parameters, namely, pressure and temperature,
different in all flow domains:

β∗ = β∗(β1, β2, p0, T0, p1, T1, p2, T2, p3, T3, p4, T4),

β∗∗ = β∗∗(β1, β2, p0, T0, p1, T1, p2, T2, p3, T3, p4, T4)
(6)

(pi and Ti, where i = 0, 1, 2, 3, and 4 are the values in the corresponding flow domains).
If we consider only equilibrium or quasi-equilibrium processes, we can use a simpler physical model instead

of (6), with allowance for (4), up to certain critical values of p and T (see more details in [5, 6] based on the classical
publications [7–9]):

β∗ = β∗(β1, β2,M0, γ0, γ1, γ2, γ3, γ4), β∗∗ = β∗∗(β1, β2,M0, γ0, γ1, γ2, γ3, γ4). (7)

To analyze the wave structures generated by interaction of the incident shock waves i1 and i2 determining
the formation of the reflected shock waves r1 and r2 of different types (see Fig. 1), it is convenient to use the
technique of shock polars. This technique allows us to avoid the complicated mathematical analysis of results of
the simultaneous solution of several (in accordance with the number of interacting shock waves) nonlinear algebraic
equations relating the values of parameters upstream and downstream of the front of each shock wave. Selection

170



20

15

10

5

0
_30 0 o

x

30

25

20

15

10

5

0
_30 0 o

x

30_60 60

25

20

15

10

5

0
_30 0 o

x

30_60 60

à b c

i2 i1

r2 r1

i2 i1

r2 r1

i2 i1

r2 r1

Fig. 2. Polars of two incident (i1 and i2) and two reflected (r1 and r2) shock waves for β1 = β2 = 22◦,
M0 = 3.45, p0 = 11.23 atm, T0 = 283 K, and γ0 = γ1 = γ3 = 1.667 (a), 1.4 (b), and 1.2 (c).

of the solutions due to their nonuniqueness is performed by an illustrative graphical method. This method makes
the mere processes of obtaining the solutions and their analysis significantly clearer and more logical and the choice
of the necessary solution in the case of its nonuniqueness simpler. The shock polar is understood as an expression
relating the flow-deflection angle θ and the pressure ratio ξ = p+/p− (p+ and p− are the pressures behind and
ahead of the shock-wave front, respectively) with a parametric dependence on the Mach number M− and effective
ratios of specific heats γ+ and γ−:

f(θ, ξ, M−, γ−, γ+) = 0. (8)

Dependence (8), which is actually called the shock polar, in the plane (x, y) = (θ, ξ) is a closed curve bounded
by the values θmin ≤ θ ≤ θmax and ξmin ≤ ξ ≤ ξmax and specularly symmetric with respect to the straight line
θs = (θmin + θmax)/2. The specific form of Eq. (8) and a detailed analysis of the shock polar with varied γ+, γ−,
and M− can be found in [2, 4].

Figure 2 shows the results of numerical simulations (the iterative numerical algorithm is described in detail
in [4]) of the problem with the values of the governing parameters being the same as in [1]. The study was
performed with varied values of γ0 and, because of many parameters used in the problem, under the additional
condition γ3 = γ1 = γ0. This condition means that the basic physical processes in the gas medium (xenon), namely,
excitation of electron shells and partial ionization of atoms, proceed upstream of the fronts of the incident shock
waves, and the gas properties remain unchanged in passing through the fronts of reflected (weaker) waves. In
addition, because of the problem symmetry, we have γ2 = γ1 and γ4 = γ3. The effective ratio of specific heats γ

reflects the physics of the process: its value equals 5/3 for a monatomic gas in the free stream, decreases because of
excitation of electron shells, and increases owing to ionization. Note, an analysis of processes from this viewpoint in
a number of problems of dynamics of a reacting gas [10–13] with γ reduced to 1.22 in argon and to 1.06 in alcohol
vapors made it possible to explain some phenomena anomalous from the viewpoint of the classical gas dynamics,
such as instability and breakdown of the bow shock wave in a hypersonic flow around a blunted body.

Figure 2 shows the polars of two incident (i1 and i2) and two reflected (r1 and r2) shock waves. Because of
the symmetry, the shock waves i1 and i2 coincide, and the shock waves r1 and r2 are specularly symmetric with
respect to the line θ = 0. The relative position of the points of intersection of these polars determines the type of the
resultant shock-wave configuration. Even if the numerical values of β∗ and β∗∗ in (7) are unknown, the shock-polar
patterns suggest which of the shock-wave structures is formed for a certain set of parameters. Let us write these
conditions, similar to (1)–(3), in the same sequence but in a different formulation:

1) if the polars r1 and r2 intersect outside the polar i1, both regular and Mach reflection is possible;
2) if the polars r1 and r2 intersect inside the polar i1, Mach reflection is impossible;
3) if the polars r1 and r2 do not intersect, regular reflection is impossible.
Let us emphasize that, if there are two points of intersection of (r1 × r2) polars, only the lower of them

(called the main polar or the weak solution) should be used. This issue was analyzed in detail in [2, 4].
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Fig. 3. Polars of two incident (i1 and i2) adn two reflected (r1 and r2) shock waves for β1 = β2 = 22◦, M0 = 3.45,
p0 = 11.23 atm, T0 = 283 K, and γ0 = 1.3 (a), 1.5 (b), and 1.667 (c); γ1 = γ0 − 0.05 and γ3 = γ1 − 0.05 = γ0 − 0.1.

Figure 2a illustrates the initial state of the steady flow in the experiment [1]: the structure with stable Mach
reflection corresponding to Fig. 1b is formed. Then, a strictly localized “spot” of rather powerful laser radiation
is inserted in a short pulse in the region ahead of the front of the shock wave i1 in the vicinity of the apex of the
upper wedge. Because of substantial changes in free-stream parameters, some part of the front of the shock wave i1
is deformed, and this deformation gradually moves toward the center. By the time of 100 µsec, the disturbance
enters the region of the central shock wave, which disappears, and a pattern of the other type (regular reflection)
arises; as is argued in [1], this pattern exists for a certain time. According to [1], this is how the transition from
Mach to regular reflection occurs, whereas the back transition from regular to Mach reflection is explained by the
influence of perturbations in the wind-tunnel duct.

From the viewpoint of the present study, another explanation for this process is more reasonable. We have
γ = 1.667 in all regions of the undisturbed xenon flow in general and, in particular, at the initial time until the heat
“spot” moves to the center. According to condition (3) (see Fig. 2a), only the shock-wave structure corresponding
to Mach reflection can arise. This is the experimentally observed event. After that, as the edge of the heat “spot”
smeared by the flow moves to the center, the value of γ decreases and reaches the value of, e.g., 1.4 at a certain
intermediate time. In this case (see Fig. 2b), the point of intersection of the (r1×r2) polars lies outside the polar i1.
Thus, the existence of both Mach and regular reflection is possible in this domain of parameters. Note that the
value γ = 1.4 is typical for diatomic gases, in particular, for the main components of air at moderate temperatures
where only translational and rotational degrees of freedom are excited and there is no substantial activation of
atomic oscillations in gas molecules.

When the disturbance reaches the center, the latter is a region of a strongly heated gas with low values of
γi < γ0 (i = 0, 1, 2, 3, 4), which cannot be determined exactly because of the lack of necessary information. Most
probably, the value of 1.2 is reached here. In this case (see Fig. 2c), in contrast to Fig. 1a, the point of intersection
of the polars r1 and r2 lies inside the polar i1. Hence, in this situation, Mach reflection is forbidden, and only
regular reflection is possible. This situation is observed in the experiment. After a certain time, the heat “spot” is
entrained downstream, and the initial situation is restored, in which both regular and Mach reflection is possible at
first (see Fig. 2b) and then only Mach reflection is possible (Fig. 2a).

The final stages of reconstruction of the initial shock-wave structure are illustrated in more detail by a
numerical experiment whose results are shown in Fig. 3. The effective ratios of specific heats are different in
different flow domains and decrease with increasing domain number: γ1 = γ0 − 0.05 and γ3 = γ1 − 0.05 = γ0 − 0.1.
This means that physical and chemical processes (in xenon, excitation of electron shells) increasing the temperature
and, correspondingly, decreasing the effective ratio of specific heats proceed in a jumplike manner on the fronts of
the incident and reflected shock waves. The problem, naturally, retains its symmetry: γ2 = γ1 and γ4 = γ3. The
parameter γ0 is varied.
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This dynamics of variation of γ0 and related values of γ1 and γ3 corresponds to downstream “entrainment” of
the heat “spot,” and the “spot” itself is fairly smeared (in this approximation). As γ3 < γ1 < γ0, the temperatures
obey the inverse dependence: T3 > T1 > T0, i.e., the “spot center” (region with the maximum temperature) is
located more downstream than the “spot periphery.” In addition, since γc

0 > γb
0 > γa

0 (the superscript indicates the
numeration in the figure), we have T c

0 < T b
0 < Ta

0 . This describes a gradual decrease in temperature (if we consider
the process evolution as a–b–c in Fig. 3) not only in space but also in time. By the end of the process (Fig. 3c),
the initial free-stream parameters are restored: γc

0 = γ
t=0
0 = 1.667.

Let us consider the results of this numerical experiment. The following dynamics of shock polars is observed:
the polars r1 and r2 intersect inside the polar i (Fig. 3a), intersect outside the polar i (Fig. 3b), and do not intersect
(Fig. 3c). This means that the following configurations are possible: only regular reflection, both regular and Mach
reflection (dual-solution domain), and only Mach reflection. Thus, as the heat “spot” is entrained downstream, the
initial configuration of Mach reflection is restored, which is the situation observed in the experiment.

Hence, the formulation of the experiment [1] can hardly be treated as organization of conditions for the
transition from Mach to regular reflection in the dual-solution domain: this can be considered as generation of
thermodynamic conditions for the domain of uniqueness of the other solution to exist. If it is necessary (or desirable)
to convert the shock-wave structure corresponding to Mach reflection to the regular configuration, the simplest
method is to reduce the flow-deflection angles β1 and β2 from 22◦ to, e.g., 10◦. In this case, only the regular
configuration is obviously possible (see [2, 4]).

Similar comments on the incorrect use of the term “transition” can be referred to some other papers where
the type of the shock-wave configuration is changed by varying free-stream conditions. For instance, the parameter
varied in the numerical experiments [14] is the density in domain 0 (see Fig. 1) in the vicinity of the plane of
symmetry. Actually, this is equivalent to replacing the steady value M0 = Ms by the disturbed value M0 = Md

and, according to (5), (6), or (7), reorganization of the “solution-attraction basin,” namely changing the positions
of the bifurcation points β∗s and β∗∗s to β∗d and β∗∗d in the space of parameters. Correspondingly, the conditions
of formation of the shock-wave structure becomes different: only Mach reflection could be formed previously (for
M0 = Ms), whereas only regular reflection becomes possible for M0 = Md. Note, of greatest interest is the case in
the dual-solution domain where it is not clear a priori which type of reflection will be formed. Therefore, in our
opinion, the experiment [14] cannot be classified as organization of the “transition” between two different types of
interaction: one structure can exist for some values of parameters, and the other structure is possible for different
parameters.

Generally speaking, it is extremely important to know which type of the shock-wave configuration will be
formed not only in the theoretical aspect but also for practical applications in the development of hypersonic
flying vehicles. This aspect of the problem was partly analyzed above, but it should be supplemented by one
more comment. In analyzing the possibility of this or that regime of shock-wave interaction and its stability to
transition, it seems extremely important to formulate a numerical experiment that would not be confined to taking
into account disturbances of one parameter (the list of parameters and their combinations are infinite) but would
make comprehensive (at least averaged) allowance for real physical and chemical processes in the gas (air) with
significant variations in the properties of the gas medium.

The conclusion on mandatory allowance for changes in thermodynamic properties of the gas in hypersonic
flows with high-pressure and high-temperature regions is illustrated in Fig. 4, which shows the ratio of specific heats
cp/cv for air (classical ratio of specific heats γ = cp/cv) as a function of temperature for different pressures (the
data were taken from tables in [9]). The wavy behavior of the curves is caused by physical processes consecutively
proceeding with increasing temperature, such as excitation of vibrational degrees of freedom of oxygen molecules
and their dissociation, excitation of vibrations in nitrogen molecules and their dissociation, and excitation of electron
shells of atoms and their ionization.

According to (7) and (8), the value of γ substantially affects the entire shock-wave configuration of the flow.
This effect is so important (see [2, 4] for more details) that all investigations that ignore this effect are rather limited
and can hardly be used for the development of a real flying vehicle.

Finally, an important fact should be noted: Why only Mach reflection is always (at least almost always)
formed in the dual solution domain in the physical (not numerical) experiment, and regular reflection is never
formed? Here, we can trace a direct analogy with a simpler problem of a supersonic flow incoming onto a wedge,
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Fig. 4. Ratio cp/cv (for air) as a function of temperature for P = 10−3 (1), 10−2 (2), 10−1 (3),
1 (4), 10 (5), 102 (6), and 103 atm (7).

where two solutions admitted by conservation laws are possible in a certain range of governing parameters (M0, β):
two shock waves with different intensities and different angles of the front to the incoming flow. A weaker shock
wave with a smaller angle of inclination and a lower intensity is always observed in physical experiments. Moreover,
numerical experiments with the strong solution used as the initial data always converted the latter into a weak
solution (the author is not aware of another situation). This was explained either by some (speculative) “entropy”
considerations or by instability of strong solutions.

In the first case, references are often made to the known Prigogine’s thermodynamic theorem [7], which
implies that the steady state corresponds to the minimum entropy production if there are external factors preventing
the equilibrium state. Note, both admissible states in the dual solution domain (1) are steady. Moreover, these
states are also equilibrium (in a certain approximation). Therefore, this theorem of the minimum entropy production
has nothing to do with the present problem.

In the second case, stability of the flow with weak and strong types of reflection is mainly examined in the
linear approximation with respect to small unsteady perturbations. Thus, it was found [15] that the problem of
disturbances in the flow with a weak reflected shock wave is well-posed and the same problem with a strong shock
wave is ill-posed. Stability of flows with weak shock waves and instability of flows with strong shock waves were
claimed in [15] on the basis of a series of numerical experiments.

Not denying the phenomenon of instability, we can offer a more physical explanation for the preference of one
of the solutions in the dual solution domain. In quantum (discrete) systems, if there are several admissible energy
levels, they are filled from the lowest to the highest level: this is the fundamental principle of energy minimum.
Similarly, in gas dynamics, we can consider the dual solution domain as a discrete system of energy levels in which
the state with the minimum energy is reached with the maximum probability. For instance, in the unique solution
domain, the main point of intersection of the (r1 × r2) polars is located lower than the point of intersection of the
(i1 × r1) and (i2 × r2) polars; hence, a regular rather than Mach shock-wave configuration is formed. In the dual
solution domain, vice versa, the main point of intersection of the (r1 × r2) polars is located higher than the point
of intersection of the (i1 × r1) and (i2 × r2) polars; hence, a Mach rather than regular shock-wave configuration is
observed. It would be of interest to perform an experiment with the transition from the basic (Mach) to the excited
(regular) state in a completely identical range of parameters (1) of the gas medium.

Note, nonuniqueness of solutions of the same type arises in some subdomains of parameters determining the
problem: for regular reflection, one or two points of intersection of the (r1 × r2) polars; for Mach reflection, one,
two, three, or four points of intersection of the (i× r) polars (see [2, 4] for more details). This nonuniqueness can
be considered as splitting of the basic level into a number of sublevels.

Finally, the author is grateful to P. I. Geshev for useful discussions, G. S. Khakimzyanov and S. N. Ko-
robeinikov for their permanent attention to this work, and to V. D. Kurguzov, V. V. Pickalov, and A. G. Tarnavsky
for their assistance in preparing the paper.
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